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Abstract
Transformation properties of perturbation expansions of vibrational quasi-
periodic orbits upon the modular transformations of frequencies are studied,
using simple but nontrivial examples: the Siegel complex quadratic map and
special solutions of the real area-preserving quadratic map. It is shown that the
transformation properties are similar to those in the previously studied case of
the rotational invariant tori, except for some special features of the real map,
related to the atypical nature of 1/3 resonance in this case.

PACS numbers: 45.05.+x, 45.10.Hj
Mathematics Subject Classification: 40A05, 58F10, 70H99

1. Introduction

The major practical problem of Hamiltonian dynamics is to find efficient and accurate methods
for computation of invariant tori, i.e., the invariant submanifolds of the phase space supporting
regular quasi-periodic orbits of the system. The invariant tori are crucial in determining the
domain of stability and properties of diffusion in phase space for Hamiltonian systems [1, 2].
On the other hand, calculations of tori are difficult in any realistic model even with the help of
powerful computers. The crux of the difficulties is already present for the systems with only
two degrees of freedom, and typical properties of these are conveniently studied using area-
preserving maps [2, 3]. The standard approach is via canonical perturbation theory, which is
designed to find a series expansion of a canonical transformation which conjugates the system
on an interesting part of the phase space to a simpler integrable system. As is well known,
due to the near-resonant orbits, or in other words, due to the famous small divisors, the formal
series expansion might not correspond to a well-defined smooth canonical transformation.
Depending on the formulation of the problem the perturbation series could be convergent or
divergent. A general survey can be found, for example, in [1].
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In order to make accurate estimates over a sufficiently long period of time relatively high
orders of the perturbation expansion are needed. Furthermore, the perturbation expansion
of a typical system on one part of its phase space, does not give any information about
the perturbation expansion of the system on any other part of the phase space. Hard work
computing the perturbation expansion to a sufficient order has to be done on each part of the
phase space independently, and from the beginning.

On the other hand, the invariant tori with the same topological properties but on different
distant parts of the phase space appear to be quite similar. There are two topologically different
classes of invariant tori which also correspond to physically different motions. Rotational
invariant tori (RIT) are those that are outside any of the resonant domains. In more technical
terms they cannot be continuously transformed into a stable fixed point. The vibrational
invariant tori (VIT) support the quasi-periodic small vibrations around an elliptic fixed point.
Neighbourhoods of all RIT, on the one hand, and of the VIT on the other, look similar. This
apparent global self-similarity of different parts of the phase space indicates that there should
be a relatively simple relation between the perturbation expansions on different parts of the
phase space.

The relation between the perturbation expansion of the RIT was studied in the method
of modular smoothing [4–6]. It was shown that there are continuous and smooth relations
between the corresponding coefficients of the perturbation expansions of the invariant tori
with frequencies related by transformations of the modular group PSL(2, Z). The method is
summarized and discussed in the next section. Later, it was also shown that a similar relation
exists between the actions of rotational periodic orbits [7].

In this paper we shall examine the transformation properties of the convergentperturbation
expansions for the vibrational motion, that is around an elliptic fixed point. The simplest
relevant examples are given by:

(a) the normal form of Siegel complex quadratic map

zj+1 = exp(i2πν0)zj + 1
2z2

j z ∈ C j ∈ Z i = √−1 (1)

(b) Lindstedt series of a special, complex, solution of the quadratic area-preserving map

qj+1 = qj cos 2πν0 − (
pj − q2

j

)
sin 2πν0

(2)
pj+1 = pj sin 2πν0 +

(
pj − q2

j

)
cos 2πν0 (qj , pj ) ∈ R × R j ∈ Z.

The perturbation theory for these maps will be recapitulated in section 3. The two
perturbation expansions are convergent with the corresponding radius of convergence ρ(ν0),
which is a complicated fractal function of the frequency ν0 of the linear rotation around the
elliptic fixed point at the origin. We shall see, in section 4, that there are continuous but non-
differentiable functions which describe the transformation properties of ρ(ν0) under the action
of the modular group on ν0. Then, we shall examine the relations between the coefficients of
the corresponding perturbation series.

2. Modular smoothing and the rotational invariant tori

In this section we summarize the basic ideas and the results of the method of modular
smoothing, as applied to the RIT of the standard map, semi-standard map and the analogous
continuous time systems.

First, we recapitulate the definitions of the systems that have been studied and briefly
review the Lindstedt series for the RIT of these systems. All this is quite well known and has
been reviewed many times [3, 8].
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The standard map (SM) is an area-preserving map of the cylinder given by

pj+1 = pj +
k

2π
sin 2πqj qj+1 = qj + pj+1 (3)

where pj , qj ∈ R × (R/2πZ) ≡ R × T 1.
We shall also use the so-called semi-standard map (SSM), which is obtained from (3) by

replacing sin(2πq) in the first part of equation (3) by exp(i2πq):

pj+1 = pj +
k

2π
exp i2πqj qj+1 = qj + pj+1. (4)

The RIT Tν,k for SM or SSM with the frequency ν, established by the KAM theorem,
are given by a function u(θ; k, ν), such that a simple change of the coordinate θ → q on T 1,
given by

q = θ + u(θ; k, ν) (5)

gives a quasi-periodic solution of (3) or (4) with the frequency ν.

qj = 2πνj + u(2πνj ; k, ν) pj = qj − qj−1. (6)

For the SSM u(θ; k, ν) ≡ iκ(θ; k, ν) is a complex function. The function u(θ; k, ν) for fixed
ν and k conjugates the dynamics on the RIT with the frequency ν to a linear rotation with the
same frequency.

If ν is a fixed irrational, satisfying a Diophantine condition, and if k is sufficiently small
k < K(ν), the function u is analytic in θ (and in k ∈ [0,K(ν))). However, it is a very
complicated fractal function of ν. For map (3) or (4) and any Diophantine ν there is a
corresponding unique K(ν) called the breakdown threshold or the critical value of k, for
which u becomes a non-differentiable function of θ , and for k > K(ν) the RIT is replaced
by a fractal discontinuous structure called cantorus [9–11]. The breakdown threshold as a
function of ν is called the critical function [12, 13]. By definition K(m/n) = 0 for all rational
frequencies m/n (in all that follows m and n are always relatively prime). Since u, as a
function of ν, has an everywhere dense, zero measure set of singularities at frequencies which
are rational m/n, or irrationals very well approximated by rationals, the function K(ν) is a
very complicated fractal function. We shall say more about K(ν), but we first discuss the
most straightforward way to estimate K(ν) using the perturbation theory.

The equation that determines u is easily obtained by writing (3) or (4) in the Lagrangian
form, that is as a second difference equation. The functional equation satisfied by u is

u(θ + 2πν; k, ν) − 2u(θ; k, ν) + u(θ − 2πν; k, ν) = k sin(θ + u(θ; k, ν)) (for SM) (7)

or

u(θ + 2πν; k, ν) − 2u(θ; k, ν) + u(θ − 2πν; k, ν) = (ik exp(θ + u(θ; k, ν)) (for SSM) (8)

Equation (7) or (8) has a formal solution as a power series in k of the form

u(θ; k, ν) =
∑
n�1

un(θ)kn =
∑
n�1

∑
m∈Z

bn,m(ν)kn exp(im2πθ) (9)

where b-coefficients are calculated recursively. The Taylor–Fourier expansion (9) is called
the Lindstedt series of the invariant tori Tν;k . In the case of SM |m| � n, and in the case of
the SSM the double expansion (9) collapses into a single power expansion in the new variable
r = k exp iθ , i.e. in the case of SSM one has the solution κ = −iu in the form

κ(θ; k, ν) =
∑
n�1

bn(ν)rn. (10)
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The recursion relations for b-coefficients for SM are

for m �= 0 bn,m = 1

D(n; ν)

∑
l�0

1

l!

∑
m0+···+ml=m

∑
n1+···+nl=n−1

1

2
(−im0)(im0)

l

l∏
j=1

bnj ,mj

(11)
D(n; ν) = 4 sin2(πνn) m0 = ±1,

and for m = 0 and for all n � 1, bk,0 = 0. The term in (11) corresponding to the index l = 0
is by definition such that n = 1 and m = m0 and, then b1,m0 = −im0/D(1, ν).

For SSM the recursion relations are simpler:

b1 = 1 bn = cn−1

D(n; ν)
cn = 1

n

n∑
m=1

mbmcn−m D(n; ν) = 4 sin2(nπν). (12)

Note the same form of the divisors D(n; ν) for both maps.
The radius of convergence ρ(ν) of the series (9) can be calculated as

ρ(ν) = inf
θ∈T 1

lim sup
n→∞

|bn(θ; ν)|−1/n = lim sup
n→∞

max|m|�n|bn,m(ν)|−1/n (13)

for SM, and as

ρ(ν) = lim
n→∞(bn(ν))−1/n (14)

for SSM, since all b-coefficients are positive for SSM.
Conjugation functions for the rotational invariant tori and their Lindstedt series, with the

corresponding radius of convergence, are analogously defined, and have analogous properties
for continuous time systems, like the following two standard examples [14–16]:

H = p2
1/2 + 2πp2 +

k

2π
(sin(2πq) + sin 2π(q1 − q2)) (15)

and

H = p2
1/2 + 2πp2 +

k

2π
(exp(i2πq) + exp i2π(q1 − q2)) (16)

which we call the two-wave model (TWM) and the complex two-wave model (CTWM).
The exact relation between ρ(ν) and K(ν) is not straightforward. The relation can be

analysed by studying the domain of analyticity of u(θ; k, ν) in the complex θ as k → ρ(ν)

[12], or by studying the domain of analyticity in the complex k. This has been investigated for
SSM and SM and a few other area-preserving maps on the cylinder [17, 18]. The boundary
of analyticity was always found to be a natural boundary but it might be of a non-circular
shape, so in general ρ(ν) � K(ν), the latter being the (real) number where the boundary of
analyticity intersects the real axes. However, for SSM one has that ρ(ν) = K(ν) [19], and in
the case of SM, numerical evidence [17, 18] suggests that ρ(ν) = K(ν) if ν is the golden mean
γ = (

√
5 − 1)/2 or any other, so-called noble irrational, i.e. a number with the continued

fraction expansion of the form

ν = 1

a1 + · · · + 1
an+γ

≡ {0, a1, . . . , an, 1, 1, . . .}. (17)

However, it has also been shown that there are irrational numbers ν (not of the form (17)),
such that the ratio ρ(ν)/K(ν) for SM can be an arbitrary small positive number.

Nevertheless, the qualitative properties of ρ(ν) and K(ν) are similar. They are both
zero at rationals and some irrationals, and different from zero at all Diophantine irrationals,
in particular, at the noble irrationals. The results of the method of modular smoothing are
obtained using always the noble numbers and are formulated in terms of either ρ(ν) or K(ν).
In our analysis we shall again use only noble numbers.
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In order to calculate ρ(ν) (or the RIT itself) with sufficient accuracy, one needs to work
through the recurrence relations up to a quite high order. Also the b-coefficients of Tν for
different ν are not related in an obvious way. On the other hand, the global similarity of
neighbourhoods of distant RIT with different noble frequencies, which is also indicated by the
self-similarity of ρ(ν) around different distant nobles, indicates that there should be a relation
between the perturbation expansions (9) for different noble RIT. In particular, ρ(γ ) should
be simply related to ρ(ν) for all other noble ν. All noble numbers can be obtained from the
golden mean by applications of elements of the modular group PSL(2, Z), i.e. by successive
applications of its two generators

R1ν = ν + 1 Iν = −1/ν. (18)

In fact, the set of nobles is also invariant under the action of PSL(2, Z). This was the
motivation in [4] to study the transformation properties of ρ(ν) under the action of PSL(2, Z).
The properties of ρ(ν) under the action of R1 and ν → −ν are trivial, so one has to explore
the relation between ρ(ν) and ρ(1/ν). The essential observation for the idea of modular
smoothing, as applied to ρ(ν) (or K(ν)), is that the singularities at different rationals, and
in particular at m/n and n/m, are of the same form. In fact in [4] it was assumed that the
function L0(ν) = ln ρ(ν) (for SSM) has the following form near singularities:

L0(ν) ≈ A0

n
Q(ν − m/n) + A1(m/n) as ν → m/n (19)

and

L0(ν) ≈ A0

m
Q(1/ν − n/m) + A2(n/m) as ν → n/m (20)

where A1(m/n),A2(m/n) and A0 are bounded, A0 is a constant, and the function Q(ν) is not
specified, but it is assumed that it has singularities weaker than a pole. The same form of the
singularities of ρ(ν) or K(ν) for SM and the continuous time systems (15) and (16) was also
implied by applications of the modular smoothing method to these systems [5, 6]. This form
of the singularities of ρ(ν) has been obtained recently, by studying ρ(m/n + µ) where µ is
complex and µ → 0 over paths which are not tangent to the real axes [20–22].

If (19) and (20) are correct then the function

L1(ν) = L0(ν) − νL0(1/ν) (21)

is bounded except at 0 and infinity. Numerical evidence presented in [4] for the SSM (and
in [6] for CTWM) shows that L1(ν) is actually continuous but with singularities in the first
derivative at every rational ν. The function L1(ν) for SM and TWM, defined directly in terms
of K(ν) (rather than ρ(ν) as for SSM) is also bounded except at 0 and infinity and continuous
with singularities in the first derivative [5]. Furthermore, it was shown (for SM and TWM in
[5] and for CTWM in [6]) that the value of L1 at a rational m/n is given by the ratio of the
b-coefficients of the suitable perturbation expansions of orders n and m. For example, in the
case of SSM the formula

L1(m/n) = lim
ν→m/n

1

n
ln

[
m

n

bm(ν−1)

bn(ν)

]
(22)

gives a function which appears to be continuous over rationals, and is equal to L1(m/n). The
functions ρ(ν) and L1(ν) for SSM are illustrated in figures 1(a) and (b).

Conclusions about the properties of L1(ν) are based on numerical evidence and analysis
of the perturbation expansions. In [23] the properties of L1 are related to a (conjectured)
relation between the critical function and the exponent of the so-called Bruno function. This
last relation has been proved recently in [22].
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Figure 1. (a) The radius of convergence ρ(ν) and (b) the function L1(ν) for the semi-standard
map.

Formula (21) gives transformation properties of the fractal functionsρ(ν) or K(ν) in terms
of the continuous function, which can be approximated by some smooth approximation, and
used for efficient and accurate computation of the critical function for any noble ν, given one
value of K(γ ) [4, 5]. In the same spirit, relation (22) can be used for approximate calculations
of the RIT [6]. In this case formula (22) gives a reasonable approximation for RIT close to
the resonances, for which the corresponding b coefficients dominate the other non-resonant
contributions. For RIT far from the resonances some form of higher order smoothing is
needed [6].

The idea of modular smoothing was also used to study other fractal functions related to
the rotational motion. In [7] it was applied to find continuous relations between the critical
values kc(m/n), for which elliptic rotational periodic orbits of SM with frequencies (m/n)

bifurcate into hyperbolic (with reflection) rotational periodic orbits with the same frequency.
It was also used to study transformation properties of the action A(k; m/n) of periodic orbits,
which is a smooth function of k but a fractal function of m/n [24].

The message that we can extract from studying the RIT in this section is that the
perturbation expansions characterized by the fixed frequency (one might call them isochronous
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expansions) have simple transformation properties with respect to the action of the modular
group on ν, which lead to useful relations between the coefficients of the expansions for
different ν.

3. Examples of fixed frequency expansions for vibrational motion

Small vibrations around an equilibrium of a system of oscillators given by the Hamilton
function

H = ν0p + kf1(p, q) + k2f2(p, q) + · · · (23)

are restricted to the VIT. If the system is linear the frequencies of motion on different VIT are
equal, and given by the masses and Jung’s constants of the oscillators. For nonlinear systems
the frequencies are, in general, non-constant functions of action, i.e., of the tori. The standard
way to approach the small nonlinear terms in (23) is via transformation into the Birkhoff
normal form [1]. If the linear frequencies ν satisfy some Diophantine condition, then one can
push the angle dependence to arbitrary high finite order in k. For example, one can construct a
smooth canonical transformation such that the new Hamilton function in the new coordinates
(which we denote again by (p, q)) is

H(n) = ν0p + kH1(p) + · · · + knHn(p) + kn+1f n
n+1(p, q) + · · · . (24)

However, it is well known that the series expansion of this canonical transformation is
generally divergent when the order n → ∞. On the other hand, if the nonlinear terms are such
that h1(p) = h2(p) = · · · = 0 to all orders, then the Birkhoff canonical transformation is
convergent and the system can be linearized by a smooth canonical transformation [25]. The
system is then integrable (according to Birkhoff),and the frequencies on all VIT are equal to the
linear frequency ν0. In this case the construction of the Birkhoff transformation is an example
of an expansion with fixed frequency. However, since the system is then integrable for any
Diophantine linear frequency ν0, the transformation of VIT Tν0 upon modular transformations
of ν0 (i.e. upon changing the masses and constants of the oscillators) is trivial. We need
examples of fixed frequency perturbation expansions for non-integrable dynamical systems
around an elliptic fixed point.

As the first simplest but nontrivial example of a dynamical system with an elliptic fixed
point at the origin and an isochronous perturbation expansion we consider the Siegel complex
quadratic map (1): z′ = exp(i2πν)z + z2/2, where we shall skip the subscript 0 on the linear
frequency. If the frequency ν satisfies a Diophantine condition then the nonlinear map (1)
is analytically conjugate to its linear part on a finite domain around the fixed point. More
precisely, there is an analytic function �(ζ ; ν) : ζ → z such that

f ◦ �(ζ ; ν) = �(exp(i2πν)ζ ; ν) (25)

The domain of analyticity of � is a disc DρS(ν) = {ζ ∈ C : |ζ | < ρS(ν)}, on which � is
given by the Taylor expansion

�(ζ ; ν) = ζ +
∞∑

k=2

bn(ν)ζ n ≡ �(θ; ν, k) =
∞∑

k=1

bn(ν)kn exp(iθ) ζ ≡ k exp(iθ) (26)

with the radius of convergence:

ρS(ν) = lim
n→∞ sup |bn(ν)|−1/n (27)

which is called the Siegel radius.
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The b-coefficients satisfy a simple recursion relation:

bn(ν) = D(n, ν)−1
n∑

m�2

bm(ν)bn−m(ν) b1(ν) = 1

(28)
D(n, ν) = (exp(in2πν) − exp(i2πν))

and the parameter k < ρS(ν) is arbitrary.
For any fixed k < ρS(ν) expansion (26) represents the Lindstedt series of a vibrational

invariant (complex) analytic circle with a frequency equal to the linear frequency ν. That is,
the curves Tν;k = {z : z = �(k exp(i2πθ); ν), fixed k < ρS(ν), θ ∈ S1}, that are images,
by �(ζ ; ν), of circles with any radius less than ρS(ν), are vibrational invariant analytic
curves filled by quasi-periodic orbits with constant frequency ν of map (1). The circles
{Tν,k, k < ρS(ν)} foliate the domain U = �(DρS(ν)), called the Siegel domain, on which
map (1) is conjugate to the rotation with fixed frequency ν.

In order to compute ρS(ν) one can apply the definition (27), but the convergence is
rather slow. On the other hand, it has been shown that ρS(ν) could be computed much more
efficiently using an averaging procedure given by the following formula [26]:

ln ρS(ν) = lim
m→∞

1

m

m∑
j=1

ln
(∣∣f (j)(z0)

∣∣) (29)

where z0 = −exp(i2πν). Formula (29) is a consequence of the facts that the quasi-periodic
orbit is ergodic on the invariant circle and that a critical point z0 lies on the boundary of the
Siegel domain.

The convergence radius ρS(ν) as a function of ν, illustrated in figure 2(a), is similar to
the analogous functions for SSM and SM. Actually the problem of linearization of the Siegel
quadratic map is the simplest problem with small divisors, and has been studied thoroughly
(a review and references can be found in [27]). For our purposes it is important to note that
the sets on which ρS(ν) is zero or different from zero are both invariant under PLS(2, Z).
Furthermore, one knows [28, 27] that there is a function B(ν), defined by the continued fraction
expansion of ν and independent of the dynamics, such that (ρS(ν))−1 exp(−B(ν)) is a bounded
function of ν. This is also true, with B(ν) replaced by 2B(ν), for SSM [19], and has been
conjectured for SM in [23] and recently proved in [22]. Thus, one could study singularities
of ρS(ν) by studying those of B(ν). Furthermore, B(ν) − νB(ν) = ln 2, for ν < 1/2, and
this relation has been used to provide an alternative explanation for the properties of the L1(ν)

for SSM [23]. However, we shall investigate the transformation properties of ρS(ν), with no
reference to the relation between ρS(ν) and the function B(ν).

The second example that we analyse is the real area-preserving quadratic map (2) with an
irrational Diophantine linear frequency ν0. It is convenient to write the map in the following
Hamiltonian form:

pi+1 = pi + C(ν0)qi + q2
i qi+1 = pi + (1 + C(ν0))qi + q2

i (30)

or in the equivalent Lagrangian form

qi+1 − 2qi + qi−1 = C(ν0)qi + q2
i (31)

where C(ν0) is fixed by the frequency of the linear rotation ν0 in (2) as C(ν0) = 4 sin2 πν0.
Invariant tori with quasi-periodic orbits of (2) with fixed frequencyν are given as solutions

of the following functional equation:

q(θ + ν; ν) − 2q(θ; ν) + q(θ − ν; ν) = C(ν0)q(θ; ν) + q(θ; ν)2. (32)
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Figure 2. The radii of convergence for the (a) complex quadratic maps (ρS(ν)) and (b) special
solutions of the real area-preserving quadratic maps (ρH (ν)).

An application of the KAM theorem ensures the existence of the solutions of these equations
for a sufficiently small range of frequencies near ν0. However, in our example we shall use
a very special solution of (32) (first studied in [29]), namely the one with the frequency ν

equal to the linear frequency ν = ν0, and we shall later study the transformation properties
of the expansion of this solution as ν0 (and always ν = ν0) is changed by modular
transformations.

So, let us look for a solution of (32), q(θ; ν), analytic in the complex θ which gives a
quasi-periodic solution of equation (31) with the frequency equal to the linear frequency of
the map: ν = ν0 [29]. We attempt to find such solution by substituting a Fourier series:

q(θ; ν) =
∑
n∈Z

αn(ν) exp(inθ) (33)

into (32), where ν = ν0. The last requirement is equivalent to D1 ≡ 4 sin2(πν) = −C(ν0).
From now on ν = ν0 and we skip the subscript 0. Then the coefficients αn(ν) satisfy the
following recursion:
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for n > 1 αn(ν) = (D1 − Dn)
−1

n−1∑
m

αm(ν)αn−m(ν) Dn = 4 sin2(nπν) (34)

and

for n < 0 αn(ν) = 0 (35)

where α1(ν) ≡ k is a free parameter.
The special solution q(θ; ν) given by (33)–(35) is complex and analytic in the half plane.

It has the frequency ν equal to the linear frequency ν0, and for real θ it exists only at the
stable fixed point of the map at the origin. This is similar to SSM whose invariant tori are
also complex functions of the complex θ , analytic on the half plane. On the other hand, map
(2) is real (while SSM is complex and for example different from SM) but the solution that
we analyse is nontrivial only for complex θ . Complex solutions of the complexified quadratic
area-preserving map (2), were analysed in [30], and have similar, but also different, properties
from the solutions considered here (and in [29]).

In order to write expansion (33) in the form of the Lindstedt series for q(θ; ν) one can
introduce the coefficients bn(ν) as equal to αn(ν) when α1(ν) ≡ k = 1. Then

q(θ; ν, k) =
∑
n�1

bn(ν)kn exp inθ. (36)

The series (36) is convergent within the circle of convergence with the radius

ρH (ν) = lim
n→∞ sup |bn(ν)|−1/n (37)

and for

Im θ > ln(k/ρH (ν)). (38)

The natural boundary (in complex θ -plane) of convergence of (36) coincides with the real
θ -axis when the parameter k = ρH (ν), and for this value of k the analytic solution
q(θ; ν, ρH(ν)) vanishes for real θ . Thus the parameter k plays the same role as the parameter
k of SSM, and its critical value can be estimated by (37).

The function ρH (ν) is illustrated in figure 2(b). As all other ρ functions considered
here, it is zero at the rationals and nonzero at most of the irrationals. However, there are
some obvious differences. For example, and this is not that important, the absolute maximum
of ρH (ν) is not at the golden mean. The most important difference, however, is the well-
known fact (for example [31] and the references therein) that the linear frequency ν = 1/3 is
obviously different from other rational frequencies. One way to see the special character of
1/3 resonance is by analysis of the b coefficients in the Lindstedt series, but we postpone that
to the next section. This has a profound effect on the transformation properties of ρH (ν).

4. Transformation properties of ρS(ν) and ρH (ν)

The radi ρS(ν) and ρH (ν) as functions of ν are very complicated fractals, with the structure
apparently similar to the corresponding functions for RIT. Therefore, we expect that the
singularities of ρS(ν) (or ρH (ν)) at different rationals m/n have the same form. The functions
are invariant under ν → ν + 1, and ν → −ν, so we have to investigate only the behaviour
under ν → ν−1. As we shall see, ρH (ν) has some special features, which are a consequence
of m/n = 1/3 being a special resonance for this map.
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Figure 3. The graphs (ρS(ν−1, ρS(ν)) (dots) and (x,mx/n + b(m/n)) (line) for the complex
quadratic maps with: (a) m/n = 1/3, (b) m/n = 1/4, (c) m/n = 1/5 and (d) m/n = 2/5.

Let us consider first ρS(ν). If the structure of the leading singularity near m/n is the same
for all m/n we can write

ln ρs(ν) ≈ f1(m/n) ln ρS(ν
−1) + f2(m/n)

(39)
ν → m

n
ν−1 → n

m

where f1(m/n) and f2(m/n) are bounded functions of m/n. The notation ≈ is to be understood
in the sense that the ratio of the left- and the right-hand sides tends to unity when ν → m

n
and

consequently ν−1 → n
m

.
In order to check relation (39) one can calculate ρS(νi) and ρS

(
ν−1

i

)
for a sequence of noble

numbers approaching a rational m/n. Plotting ρS(νi) versus ρS

(
ν−1

i

)
along such a sequence

will show if relation (39) is indeed linear. Furthermore, if (39) is true, one can obtain f1(m/n)

by estimating the slope of the linear fit through the points
(
ρS

(
ν−1

i

)
, ρS(νi)

)
. Figures 3(a)–(d )

illustrate a sample of such calculations for few m/n.
The graph

(
ρS(νi), ρS

(
ν−1

i

))
is always linear, and, furthermore, f1(m/n) = m/n, for all

m/n that we have tested (much more than is shown in the figures). Thus, we conclude that
ln ρS(ν) and ν ln ρS(ν

−1) could cancel each other’s leading singularity to produce a bounded
function of ν. In complete analogy with the case of RIT we define

L1S(ν) = ln ρS(ν) − ν ln ρS(ν
−1). (40)

Numerically calculated L1(ν) for 5000 noble numbers of the form νj = jγ − [jγ ] is
shown in figure 4, together with L0S(ν) = ln ρS(ν). The meaning of the circles will be
explained later. We show the function only on (0, 1). The figure indicates that L1(ν) is
bounded at all rationals in (0, 1) and that the limit when ν → 0 exists and is equal to −∞.
Furthermore, L1(ν) looks continuous, in complete analogy with the corresponding function
for the case of RIT. However, cusp-like, finite, singularities due to the infinite first derivative
at ν = m/n are different from the analysed cases of RIT.

Let us now consider ρH (ν) of the special solutions for the quadratic real maps. Following
the same argument we analysed graphs

(
ρH (νi), ρH

(
ν−1

i

))
for sequences of nobles νi

approaching various rationals. The graphs are presented in figures 5(a)–(d ) together with
the corresponding linear fits by the lines y = xm/n + b.
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Figure 4. The functions L1S(ν) (upper curve), L0S(ν) (lower curve) and L1S(m/n) (circles)
calculated with formula (45).
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Figure 5. The graphs (ρH (ν−1, ρH (ν)) (dots) and (x,mx/n + b(m/n)) (line) for the special
solutions of the real area-preserving quadratic maps: (a) m/n = 1/2, (b) m/n = 1/5,
(c) m/n = 2/5 and (d ) m/n = 1/3.

By inspecting these figures (and many more that have been calculated) we conclude that
for all (m, n) relatively prime and m �= 3 �= n we have the relation

ln ρH (ν) ≈ m

n
ln ρH (ν−1) + A(m/n) ν → m/n as specified. (41)

On the other hand, if either m or n is equal to 3 we still have a linear relation but f1(m/n) �=
m/n.

Proceeding, on the same lines as before, we defined

L1H (ν) = ln ρH (ν) − ν ln ρH (ν−1). (42)

The function is illustrated in figures 6(a) and (b), together with L0H (ν) = ln ρH (ν). The
circles will be explained later.

First, we observe that L1(ν) is bounded at all rationals m/n such that neither m nor
n is equal to 3. On the other hand, it obviously diverges as ν approaches 1/3, 2/3
and 3/4, 3/5, 3/7, . . . . Actually L1(ν) looks continuous on all intervals of the form
(3/(n + 1), 3/n), n = 3, 4, . . . . The function has finite singularities, similar to those of
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Figure 6. (a) The functions L1H (ν) (upper curve), L0H (ν) (lower curve) and L1H (m/n) (circles)
calculated with formula (46). (b) The same as in (a) but on the interval (1/3, 2/3).

L1S(ν), at all m/n inside each of the intervals, and also for m/n ∈ (1/3, 2/3). On the
boundaries of these intervals the function diverges to infinity.

The behaviour of L1H (ν) at the points with infinite singularity is related to the well-known
special status of the 1/3 resonance of the quadratic map, which is carried over into L1H (ν)

via either ln ρH (ν) or via ln ρH (ν−1).
The functions L1S/H (ν), introduced by (40) and (42), give relations between the most

important terms in the Lindstedt series of VIT with frequencies ν and ν−1. All b-coefficients
of such tori have the form of sums of products of inverse powers of the divisors D(n, ν), given
by (28) or (34). From the form of the divisors we see that when ν → m/n the dominant
coefficients for the Siegel map are bn+1(ν), and for the real quadratic map the most important
coefficients are bn+1(ν) and bn−1(ν). In the limit ν → m/n precisely these b coefficients
diverge, but the ratio

∣∣bm+1(ν
−1)

∣∣
|bn+1(ν)| (43)
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or ∣∣bm+1(ν
−1)

∣∣ +
∣∣bm−1(ν

−1)
∣∣

|bn+1(ν)| + |bn−1(ν)| (44)

for map (1) or (2), respectively, is finite in this limit, as can be easily checked by explicit
computation of the b-coefficients. Expressions (43) and (44) are related to the corresponding
L1 functions by the following formulae:

lim
ν→m/n

L1S(ν) ≡ L1S(m/n) = lim
ν→m/n

1

n
ln

[
m

n

∣∣bm+1(ν
−1)

∣∣
|bn+1(ν)|

]
(45)

and

lim
ν→m/n

L1H (ν) ≡ L1H (m/n) = lim
ν→m/n

1

n
ln

[
m

n

∣∣bm+1(ν
−1)

∣∣ +
∣∣bm−1(ν

−1)
∣∣

|bn+1(ν)| + |bn−1(ν)|

]
(46)

which are analogous to the corresponding formulae for RIT (see (22) and [5, 6]).
Formulae (45) and (46) are illustrated in figure 4 for (45) and figures 6(a) and (b) for (46),

where circles denote L1S/H (m/n) calculated by formula (45) or (46), and dots are values of
L1S/H (m/n) calculated from definition (27) or (37) and by direct estimates of ρS/H (ν) for
noble ν. The agreement is obvious. We believe that (45) and (46) represent exact relations.

Thus, formulae (45) and (46) enable one to calculate the functions L1S and L1H

respectively, at few rationals m/n with small n using the perturbation theory of a finite
small order.

Obviously, more than one term is needed for a good approximation of a VIT with frequency
ν further away from rationals. One should expect to find simple relations between the terms
corresponding to the best rational approximants of the frequencies ν and ν−1, analogous to
relations (45) and (46), giving the L functions of higher orders, but we do not pursue this
further.

5. Conclusions

We have analysed transformation properties of the perturbation expansions with fixed
frequency of vibrational invariant tori in the two simplest but nontrivial examples. The
conclusions are analogous to those obtained previously for the rotational tori. The
transformation properties are described by the corresponding functions L1S(ν) or L1H (ν).
The first one is bounded except at 0 (and infinity) and is continuous, with cusp-like finite
singularities at each rational. L1H (ν) has infinite singularities at all rationals m/n such that
either m or n is equal to 3 or 0. However, it is bounded and continuous inside the intervals
bounded by the infinite singularities, for example, on all intervals (3/(n+ 1), 3/n), n � 3, and
on (1/3, 2/3). L1H (ν) also has cusp-like finite singularities at all finite rationals m/n such
that m �= 3 �= n.

All these results are a consequence of the same form of the leading singularities at
different rationals (except 1/3 for the real quadratic map) in the corresponding coefficients of
the perturbation expansion. This property of the fixed frequency perturbation series enables
one to compare the most important terms in the expansion of a vibrational tori with the
frequency near a rational by just properly rescaling the perturbation parameter k. For tori with
frequencies far from rationals one would have to look for relations between more than two
coefficients, probably as in the case of RIT [6], but we have not done that. Let us mention
that the rescaling of the parameter k in the examples of vibrational tori treated here amounts
to changing the distance from the elliptic fixed point at the origin.
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Further research is required to fully understand the transformation properties of the
perturbation expansions for the vibrational tori, but our results indicate that there are simple
and useful relations, similar to the case of the rotational motion.
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